VANADIUM AND ITS MAIN INDUSTRY: A REVIEW AND THE RESOURCE POTENTIAL IN CANADA

Volume 3, Issue 4, August 2019     |     PP. 127-158      |     PDF (2248 K)    |     Pub. Date: July 15, 2019
DOI:    243 Downloads     7335 Views  

Author(s)

Mehmet F. Taner, Consulting geologist and mineralogist, Ottawa, Canada
Maria Skyllas-Kazacos, Professor Emeritus, School of Chemical Engineering. The University of New South Wales, UNSW Sydney, New South Wales, 2052, Australia
Patrick Houle, géologue régional Nord-du-Québec. Ministère des Richesses Naturelle du Québec, Canada

Abstract
Vanadium is a strategic metal which is widely utilized in a variety of applications; (i) 63% in the production of high-quality metal alloys such as high-strength steel engineered for pipeline and commercial rebar applications (ii) 24% in the titanium-aluminum-vanadium alloys produced for the aerospace industry; and (iii) 13% in the chemical industry for the production of catalysts, electronics and batteries (e.g., vanadium redox batteries). New uses and applications are continually being discovered for this metal. Vanadium is relatively abundant in the Earth’s crust, but few primary economic deposits are known in the world. In 2018, China produced 54% of the world’s vanadium, while the remainder of the global supply being derived from Russia (20%), South Africa (16%) and Brazil (10 %). Ninety-five percent of vanadium deposits worldwide are magmatic type deposits with the remaining 5% being sediment hosted deposits. The majority of the vanadium deposits in Canada are associated with layered mafic intrusions. Although there is substantial potential for vanadium in Canada, there currently exists no vanadium production or associated industry. Vanadium mineralization in Canada occurs in oxide-rich horizons within the layered gabbro zones of the upper parts of the Bell River Complex, Matagami, Quebec and the Doré Lake Complex, Chibougamau, Québec. There is also substantial vanadium potential in the Athabascan oil sands, Alberta, as well as Newfoundland and Labrador. Canada has the potential to become a large-scale vanadium producer especially with the wide variety of industrial applications situated in close proximity and elsewhere throughout North America. Therefore, it is recommended that Canada should seek to attract and develop robust new industries related to vanadium applications to make better use of its substantial vanadium potential.

Keywords
vanadium, titaniferous magnetite, ilmenite, layered intrusions, beneficiation of V-Ti-Fe ores, Matagami, Chibougamau, Abitibi, Quebec, Canada, vanadium redox flow battery, vanadium electrolytes, energy storage

Cite this paper
Mehmet F. Taner, Maria Skyllas-Kazacos, Patrick Houle, VANADIUM AND ITS MAIN INDUSTRY: A REVIEW AND THE RESOURCE POTENTIAL IN CANADA , SCIREA Journal of Environment. Volume 3, Issue 4, August 2019 | PP. 127-158.

References

[ 1 ] Allard, G.O., 1976, Doré Lake Complex and its importance to Chibougamau geology and metallogeny. Ministère des Richesses Naturelles du Québec, DP-368, 446 pages.
[ 2 ] Allard, G.O., 2002, Roof rock assimilation in the Doré Lake Complex and its influence on vanadium concentration. In “Proceedings volume-COM2002: Vanadium-Geology, Processing and Applications, edited by M.F.Taner, P.A. Riveros, J.E. Dutriziac, M.A. Gattrell and L.M. Perron, p, 29-35.
[ 3 ] Beaudry, C., and Gaucher, E., 1986, Cartographie géologique dans la région de Matagami. Ministère de l’Énergie des Ressources du Québec.MB86-32, 147pages.
[ 4 ] Bradbury, D.S., 2002, The production of Vanadium Pentoxide. In “Proceedings volume-COM2002: Vanadium-Geology, Processing and Applications, edited by M.F.Taner, P.A. Riveros, J.E. Dutriziac, M.A. Gattrell and L.M. Perron, p, 115-130.
[ 5 ] Buddington, A.F., and Lindsley, D.H., 1964, Iron titanium oxide minerals and their synthetic equivalents. Journal of Petrology, v. 5, p. 310-357.
[ 6 ] Cimon, J., 1998, L'unité à apatite de rivière de Rapides, Complexe de Sept-Îles: localisation stratigraphique et facteurs à l'origine de sa formation. Ministère des Ressources Naturelles du Québec, ET97-05, Part I, p. 1-32.
[ 7 ] Daigneault, R., and Allard, G.O., 1990, Le complexe du Lac Doré et son environnement géologique, Ministère de l’Energie et des Ressources du Québec, MM89-03.
[ 8 ] Dupéré, M., 2011, Technical Report: Resource update of the Iron-T; Vanadium-Titanium-Iron Property Matagami area, Quebec, Canada, for Apella Resources Inc. SGS Canada inc. – Geostat, 113 pages.
[ 9 ] Girard, R., and Allard, G.O., 1998, The lac Doré vanadium deposits, Chibougamau. In " Geology and Metallogeny of the Chapais-Chibougamau Mining District: a new vision of the discovery potential", Proceedings of the Chapais Chibougamau 1998 symposium, edited by P. Pilote, p. 99-102.
[ 10 ] Gupta, C.K. and Krishnammurthy, N., 1992, Exractive metallurgy of vanadium. Process metallurgy 8, Elsevker, London, New York, Tokyo,689 pages
[ 11 ] Habashi, F., 2002, Two Hundred Years of Vanadium. In “Proceedings volume-COM2002: Vanadium-Geology, Processing and Applications, edited by M.F.Taner, P.A. Riveros, J.E. Dutriziac, M.A. Gattrell and L.M. Perron, p, 1-10.
[ 12 ] Habtelelassie, M.M., Mathison, C.I., and Gilkes, R.J., 1996, Vanadium in magnetite gabbros and its behaviour during lateritic weathering, Windimurra Complex, Western Australia. Australian Journal of Earth Sciences, v. 43, p. 555-566
[ 13 ] Haggerty, S.E., 1991, Oxide textures- a mini-atlas. In Oxide minerals: petrologic and magnetic significance, edited by D. H. Lindsley, Reviews in Mineralogy, v. 25, p.129-219.
[ 14 ] Hukkanen, E., and Walden, H., 1985, The production of vanadium and steel from titanomagnetites. International Journal of Mineral processing, 15, p. 89-102.
[ 15 ] Hykawy, J., 2009, Vanadium supercharger In Byron Industry report, Equity / Research (www.byroncapitalmarkets.com).
[ 16 ] Jobin-Bevans, L.S., Halden, N.M., Peck, D.C., and Cameron, H.D. M., 1997. Geology and oxide mineralization of the Pipestone Lake anorthosite complex, Manitoba. Exploration and Mining Geology, v. 6, p. 35-61.
[ 17 ] Kausar, N., Mousa A., and Skylas-Kazacos, M., 2016, The Effect of Additives on the High Temperature Stability of the Vanadium Redox Flow Battery Positive Electrolytes. ChemElectroChem. Volume 3, Issue 2. February 2016, Pages 276–282. First published online 12 Nov. 2015. DOI: 10.1002/celc.201500453.
[ 18 ] Kerr, A., Walsh, J.A., Sparkes, G.W., and Hinchey, J.G., 2013, Vanadium potential in Newfoundland and Labrador: a review and assessment. Current Research, Newfoundland and Labrador Department of Natural Resources, Geological Survey. Report 13-1, p. 137-165
[ 19 ] Klemm, D.D., Henckel, J., Dehm, R., and Von Gruenewaldt, G., 1985, The geochemistry of titanomagnetite in magnetite layers and their host rocks of the eastern Bushveld Complex. Economic Geology, v. 80, p.1075-1088.
[ 20 ] Li, L., Kim, S., Wang, W., Vijayakumar, M., Nie, Z., Chen, B., Zhang, J., Xia, G., Hu, J., Graff, G. et al., 2011. Adv. Energy Material 1, 394–400.
[ 21 ] Lim, T.M., Parasuraman, A., Menictas C., and Skyllas-Kazacos, M., 2012, Review of Material Research and Development for Vanadium Redox Flow Battery Applications. Electrochimica Acta Special Issue: 10th ISE Spring Mtg 2012. Electrochim. Acta Volume: 101   Pages: 27-40   Published: JUL 1 2013 (Available on-line 28 September 2012), http://dx.doi.org/10.1016/j.electacta.2012.09.067
[ 22 ] Lindsley, D.H., 1991, Experimental studies of oxide minerals. In Oxide minerals: petrologic and magnetic significance, edited by D.H. Lindsley, Reviews in Mineralogy, v. 25, p.69-106.
[ 23 ] MacLean, W.H., 1984, Geology and ore deposits of the Matagami District. In Chibougamau-Stratigraphy and Mineralization, edited by J. Guha and E.H. Chown, the Canadian Institute of Mining and Metallurgy, Special volume 34, p. 483-495.
[ 24 ] Maier, W.D., Barnes S.-J., and Pellet, T., 1996, The economic significance of the Bell River Complex, Abitibi Subprovince, Québec, Canadian Journal of Earth Sciences, v. 33, p. 967-980.
[ 25 ] Monskalyk, R.R, and Alfantazi, A.M., 2003, Processing of vanadium: a review. Minerals Engineering, 2003, vol. 16, p. 793-805.
[ 26 ] Mouksil, A., Belkacim, S., Solgadi, F., and Perreault, S., 2016, Les gîtes, gisements ou indices Fe-Ti +/- P +/- V dans les anorthosites et roches associées au Québec. Ministère de l’Énergie et des Ressources naturelles du Québec, MB 2016-06, 79 pages.
[ 27 ] Mousa, A., and Skyllas-Kazacos, M., 2015, The effect of Additives on the Low Temperature Stability of the Vanadium Redox Flow Battery Negative Half-Cell Electrolyte, Chem Electro Chem, . Volume 2 Issue 11, November 2015, pp. 1742 - 1751. Article first published online: 17 JUL 2015, DOI: 10.1002/celc.201500233
[ 28 ] Perles, T.T., 2014., Vanadium market structures and outlook. Vanadium symposium: COM, conference of Metallurgists proceedings ISBN 978-1-9268722-24-7.
[ 29 ] Piché, M., Guha, J., and Daigneault, R., 1993, Stratigraphic and structural aspects of the volcanic rocks of the Matagami mining camp, Québec: implication for the Norita ore deposits. Economic Geology, v. 88, p. 1542-1558.
[ 30 ] Polyak, D.E, 2018. USGS, Mineral commodity summaries. Pp 180-181)
[ 31 ] Prifti, H., Parasuraman, A., Winardi, S., Lim T.M., and Skyllas-Kazacos, M., 2012, Membranes for Redox Flow Battery Applications, Special Issue: Membranes for Electrochemical Energy Applications, Journal of Membranes, 2(2), 275-306; doi: 10.3390/membranes2020275
[ 32 ] Radtke, A.S., 1962, Coulsonite, FeV2O4, a spinel-type mineral from Lovelock, Nevada. The American Mineralogist, v. 47, p. 1284-1291.
[ 33 ] Ramdohr, P., 1953, Ulvöspinel and its significance in titaniferous iron ores. Economic Geology, v. 48, p. 677-687.
[ 34 ] Ramdohr, P., 1969, The ore minerals and their intergrowths. Pergamon Press, London, 1174 pages.
[ 35 ] Reynolds, I.M., 1985a, Contrasted mineralogy and textural relationships in the Uppermost titaniferous magnetite layers of the Bushveld Complex in the Bierkraal area north of Rustenburg. Economic Geology, v. 80, p. 1027-1048.
[ 36 ] Reynolds, I.M., 1985b, The nature and origin of titaniferous magnetite-rich layers in the upper zone of the Bushveld Complex: a review and synthesis. Economic Geology, v. 80, p. 1089-1108.
[ 37 ] Roe, S., Menictas C., and Skyllas-Kazacos, M., 2015, A High Energy Density Vanadium Redox Flow Battery with 3 M Vanadium Electrolyte. J. Electrochem Soc., Focus Special Issue. Published July 23, 2015, DOI: 10.1149/2.0041601jes.
[ 38 ] Rose, E.R., 1973, Geology of vanadium and vanadiferous occurrence of Canada. Economic Geology Report No.27. Geological Survey of Canada, 130 pages
[ 39 ] Schuiling, R.D., and Freenstra, A., 1980, Geochemical behaviour of vanadium in iron-titanium oxides. Chemical Geology, v.30, p.143-150
[ 40 ] Scott, R.W., 1980, The geology and petrography of a portion of the Bell river complex in Bourbaux township, Québec. Master of Science thesis, University of Toronto, 163 pages.
[ 41 ] Shannon, R.D., 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, v. A32, p. 751-767.
[ 42 ] Sharp, J.I., 1968, Géologie et gisements de sulfures de la région de Matagami, Comté d’Abitibi-Est. Rapport Géologique 137. Ministère des Richesses Naturelle du Québec.
[ 43 ] Skyllas-Kazacos, M., 1996, High Energy Density Vanadium Electrolyte Solutions, Methods of Preparation Thereof and All-Vanadium Redox Cells and Batteries Containing High Energy Density Vanadium Electrolyte Solutions. International Patent Application No. PCT/AU96/00268, May, 1996.
[ 44 ] Skyllas-Kazacos, M., 2003, Novel vanadium chloride/polyhalide redox flow battery. J. Power Sources, 24, 299-302.
[ 45 ] Skyllas-Kazacos, M., Cao, L., Kazacos, M, Kausar, N., and Mousa, A., 2016, Vanadium Electrolyte Studies for the Vanadium Redox Battery – A Review. ChemSusChem. Volume 9, Issue 13, p.1521–1543.
[ 46 ] Skyllas-Kazacos, M., Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S., and Saleem M., 2011, Progress in Flow Battery Research and Development, CRITICAL REVIEWS, in Electrochemical and Solid-State Science and Technology Journal of The Electrochemical Society, 158 (8) p. R55-R79
[ 47 ] Skyllas-Kazacos, M., and Kazacos, M., 2000, Stabilised Electrolyte Solutions, Methods of Preparation Thereof and Redox Cells and Batteries Containing Stabilized Electrolyte Solutions, US Patent No. 6,143,443.
[ 48 ] Skyllas-Kazacos, M., Kazacos M., and McDermott, R., 1988, Vanadium Compound Dissolution, South African Patent No. 88/9244.
[ 49 ] Skyllas-Kazacos, M, and McCann, J. F., 2014, Chapter on “Vanadium Redox Flow Batteries” in Advances in batteries for medium- and large-scale energy storage, Editors: C. Menictas, M.Skyllas-Kazacos and T. Lim, Woodhead Publishing.
[ 50 ] Skyllas-Kazacos, M., and Menictas, C., 2011, Performance of vanadium/oxygen redox fuel cell, Journal of Applied Electrochemistry Special Issue on Flow Cells, 41, p.1223–1232.
[ 51 ] Skyllas-Kazacos M., and Robins, R.G., 1988, All-vanadium redox battery, US Pat. No. 4,786,567.
[ 52 ] Skyllas-Kazacos, M., Rychcik, M., Robins R.G., Fane A.G., and Green, M, A., 1986, New all-vanadium redox cell. J. Electrochem. Society, 133, 1057-1058.
[ 53 ] Taner, M.F., and Allard, M., 1998, Évaluation du Potentiel en vanadium dans la partie sommitale du complexe de la rivière Bell. Noranda Inc. Ministère des Ressources Naturelles du Québec, 45 p (GM56921 and GM56292).
[ 54 ] Taner, M.F., Ercit, T.S., and Gault, R.,1998, Vanadium-bearing magnetite from Matagami and Chibougamau mining districts, Abitibi, Quebec, Canada. Exploration and Mining Geology, v. 7, p. 299-311.
[ 55 ] Ulaganathan, M., Aravindan, V., Yan, Q., Madhavi, S., Skyllas-Kazacos M., and Lim, T.M., 2016, Recent Advancements in All-Vanadium Redox Flow Batteries, Advanced Materials Interfaces, 2016, Vol.3(1), Article first published online: 6 NOV 2015. DOI: 10.1002/admi.201500309.
[ 56 ] Von Gruenewaldt, G., Klemm, D.D., Henckel, J., and Dehm, R. M., 1985a, Exsolution features in titanomagnetites from massive magnetite layers and their host rocks of the upper zone, eastern Bushveld Complex. Economic Geology, v. 80, p. 1049-1061.
[ 57 ] Von Gruenewaldt, G., Sharpes, M.R., and Hatton, C.J., 1985b, The Bushveld Complex: introduction and review. Economic Geology, v. 80, p. 803-812.
[ 58 ] Wang, W., Nie, Z., Chen, B., Chen, F., Luo, Q., Wei, X., Xia, G., Skyllas-Kazacos, M., Li, L., and Yang, Z., 2012, A New Fe/V Redox Flow Battery Using a Sulfuric/Chloric Mixed-Acid Supporting Electrolyte, Advanced Energy Materials, Volume 2, Issue 4, p. 487–493, DOI: 10.1002/aenm.201100527
[ 59 ] Willemse, J., 1969, The vanadiferous magnetic iron ore of the Bushveld igneous complex. Economic Geology, Monograph 4, p. 187-208.