Anti-oxidation mechanism investigation of SiO2+SiC+Al (H2PO4)3 coating for continuous SiC fiber reinforced AlPO4 composites with multi-walled carbon nanotubes as the absorber

Volume 6, Issue 3, June 2021     |     PP. 25-35      |     PDF (679 K)    |     Pub. Date: June 8, 2021
DOI: 10.54647/materials43128    88 Downloads     32056 Views  

Author(s)

Xi Xia, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
Feng Wan, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
Jianhui Yan, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
Hongmei Xu, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
KaiDi Hu, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

Abstract
SiCf/AlPO4 composites were fabricated using a hot laminating process with MWCNTs as the absorber. A coating prepared from SiO2+SiC+Al (H2PO4)3 was applied to the surface of SiCf/AlPO4 composites prior to an anti-oxidation test at 1373 K in air for 40 h. The anti-oxidation effect was verified by a three-point bending test, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and a dielectric property test. Anti-oxidation mechanism investigations revealed that the coating effectiveness could be attributed to three substances, i.e. SiO2, SiP2O7 and SiO2 +AlPO4 solid solution from the reactions of SiC+O2→SiO2+CO, SiO2+P2O5→SiP2O7 and SiO2 +AlPO4→ solid solution, respectively.

Keywords
SiC fibers; Oxidation; SiP2O7; Solid solution

Cite this paper
Xi Xia, Feng Wan, Jianhui Yan, Hongmei Xu, KaiDi Hu, Anti-oxidation mechanism investigation of SiO2+SiC+Al (H2PO4)3 coating for continuous SiC fiber reinforced AlPO4 composites with multi-walled carbon nanotubes as the absorber , SCIREA Journal of Materials. Volume 6, Issue 3, June 2021 | PP. 25-35. 10.54647/materials43128

References

[ 1 ] H. Wang, D. Zhu, X. Wang, F. Luo, Composites Part A: Applied Science and Manufacturing, 93 (2017) 10-17.
[ 2 ] Q. Zhang, Y. Gou, J. Wang, H. Wang, K. Jian, Y. Wang, Journal of the European Ceramic Society, 37 (2017) 1909-1916.
[ 3 ] T. Shao, H. Ma, J. Wang, M. Feng, M. Yan, J. Wang, Z. Yang, Q. Zhou, H. Luo, S. Qu, Journal of the European Ceramic Society, 40 (2020) 2013-2019.
[ 4 ] Z. Cheng, Y. Liu, F. Ye, C. Zhang, H. Qin, J. Wang, L. Cheng, Journal of the European Ceramic Society, 40 (2020) 1149-1158.
[ 5 ] M. Zhao, Y. Liu, N. Chai, H. Qin, X. Liu, F. Ye, L. Cheng, L. Zhang, Journal of the European Ceramic Society, 38 (2018) 1334-1340.
[ 6 ] R. Mo, X. Yin, F. Ye, X. Liu, X. Ma, Q. Li, L. Zhang, L. Cheng, Journal of the European Ceramic Society, 39 (2019) 743-754.
[ 7 ] X. Huang, X. Yan, L. Xia, P. Wang, Q. Wang, X. Zhang, B. Zhong, H. Zhao, G. Wen, Scripta Materialia, 120 (2016) 107-111.
[ 8 ] X. Huang, M. Lu, X. Zhang, G. Wen, Y. Zhou, L. Fei, Scripta Materialia, 67 (2012) 613-616.
[ 9 ] H. Tian, H.T. Liu, H.F. Cheng, Composites Science and Technology, 90 (2014) 202-208.
[ 10 ] H. Luo, Y. Tan, Y. Li, P. Xiao, L. Deng, S. Zeng, G. Zhang, H. Zhang, X. Zhou, S. Peng, Journal of the European Ceramic Society, 37 (2017) 1961-1968.
[ 11 ] Y. Qing, Y. Mu, Y. Zhou, F. Luo, D. Zhu, W. Zhou, Journal of the European Ceramic Society, 34 (2014) 2229-2237.
[ 12 ] Y. Mu, W. Zhou, Y. Hu, H. Wang, F. Luo, D. Ding, Y. Qing, Journal of the European Ceramic Society, 35 (2015) 2991-3003.
[ 13 ] F. Ye, L. Zhang, X. Yin, Y. Zhang, L. Kong, Q. Li, Y. Liu, L. Cheng, Journal of the European Ceramic Society, 33 (2013) 1469-1477.
[ 14 ] X. Yuan, L. Cheng, S. Guo, L. Zhang, Ceramics International, 43 (2017) 282-288.
[ 15 ] W.L. Song, M.S. Cao, Z.L. Hou, J. Yuan, X.Y. Fang, Scripta Materialia, 61 (2009) 201-204.
[ 16 ] F. Wan, F. Luo, H. Wang, Z. Huang, W. Zhou, D. Zhu, Ceramics International, 40 (2014) 15849-15857.
[ 17 ] F. Wan, F. Luo, Y. Mu, Z. Zeng, W. Zhou, Ceramics International, 41 (2015) 9957-9965.
[ 18 ] F. Wan, F. Luo, Y. Shi, W. Zhou, D. Zhu, International Journal of Applied Ceramic Technology, 12 (2015) 1045-1053.
[ 19 ] S. Hoshii, A. Kojima, T. Tamaki, S. Otani, Journal of Materials Science Letters, 19 (2000) 557-560.
[ 20 ] H. Schneider, J. Schreuer, B. Hildmann, Journal of the European Ceramic Society, 28 (2008) 329-344.
[ 21 ] A. Nicolson, G. Ross, Instrumentation and Measurement, IEEE Transactions on, 19 (1970) 377-382.
[ 22 ] J. Baker-Jarvis, E.J. Vanzura, W.A. Kissick, Microwave Theory and Techniques, IEEE Transactions on, 38 (1990) 1096-1103.
[ 23 ] W.F. Horn, F.A. Hummel, Journal of the American Ceramic Society, 63 (1980) 338-339.
[ 24 ] P. Robinson, E.R. McCartney, Journal of the American Ceramic Society, 47 (1964) 587-592.